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Abstract

Robust 6DoF pose estimation with mobile devices is the
foundation for applications in robotics, augmented reality,
and digital twin localization. In this paper, we extensively
investigate the robustness of existing RGBD-based 6DoF
pose estimation methods against varying levels of depth
sensor noise. We highlight that existing 6DoF pose esti-
mation methods suffer significant performance discrepan-
cies due to depth measurement inaccuracies. In response
to the robustness issue, we present a simple and effective
transformer-based 6DoF pose estimation approach called
DTTDNet1, featuring a novel geometric feature filtering
module and a Chamfer distance loss for training. Moreover,
we advance the field of robust 6DoF pose estimation and in-
troduce a new dataset – Digital Twin Tracking Dataset Mo-
bile (DTTD-Mobile), tailored for digital twin object track-
ing with noisy depth data from the mobile RGBD sensor
suite of the Apple iPhone 14 Pro. Extensive experiments
demonstrate that DTTDNet significantly outperforms state-
of-the-art methods at least 4.32, up to 60.74 points in ADD
metrics on the DTTD-Mobile. More importantly, our ap-
proach exhibits superior robustness to varying levels of
measurement noise, setting a new benchmark for robustness
to measurement noise. The project page is publicly avail-
able at https://openark-berkeley.github.io/DTTDNet/.

1. Introduction
Six-degrees-of-freedom (6DoF) object pose estimation
aims at determining the position and orientation of an object
in 3D space. In contrast to the more matured technology of
camera tracking in static settings known as visual odometry
or simultaneous localization and mapping [3, 17, 29, 32],
identifying the relative position and orientation of one or
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Figure 1. Left: Shadow plot of the relation between the depth
noise (depth-ADD) and the inference error (ADD) of considered
state-of-the-art methods and proposed DTTDNet. Right: Visu-
alization of pose estimation results of baseline methods and pro-
posed DTTDNet.

more objects with respect to the user’s ego position is a
core function essential for ensuring a high-quality user ex-
perience in applications like augmented reality (AR). In the
most general setting, each object with respect to the ego po-
sition may undergo independent rigid-body motion, and the
combined effect of overlaying multiple objects in the scene
may also cause parts of the objects to be occluded from the
measurement of the ego position. In this paper, the main
topic of our investigation is to study the 6DoF pose esti-
mation problem under a wide range of motion, occlusion,
color, and lighting conditions, especially improving the ac-
curacy and robustness of algorithms under novel data sensor
properties. The dataset and proposed model are made pub-
licly available at https://github.com/augcog/DTTD2.

Recent advancements in the field of 6DoF pose esti-
mation have primarily been motivated by deep neural net-
work (DNN) approaches that advocate end-to-end train-
ing to carry out crucial tasks such as image semantic seg-
mentation, object classification, and object pose estima-
tion. Notable studies [10, 11, 16, 27, 35] have demonstrated
the effectiveness of these pose estimation algorithms us-
ing established real-world 6DoF pose estimation datasets
[13, 14, 23, 24, 26, 39]. However, it should be noted that
these datasets primarily focus on robotic grasping tasks, and
applying these solutions to environments served with mo-
bile devices introduces a fresh set of challenges. A previous
work [6] first studied this gap in the context of 6DoF pose



estimation and replicated real-world digital-twin scenarios
with varying levels of capture distances, lighting conditions,
and object occlusions. It is important to mention that, this
dataset was collected using Microsoft Azure Kinect, which
may not be the most suitable camera platform for studying
3D localization under realistic mobile environments.

Alternatively, Apple has emerged as a strong proponent
of utilizing RGB-D spatial sensors for mobile AR appli-
cations with the design of their iPhone Pro camera suite,
such as on the latest Apple iPhone 14 Pro model. This par-
ticular smartphone is equipped with a rear-facing LiDAR
depth sensor [2, 7, 15, 21, 38, 40], a critical component to
achieving accurate and detailed 3D perception and spatial
understanding. However, one distinguishing drawback of
the iPhone LiDAR depth is the low resolution of the depth
map produced by the iPhone ARKit [29], a 256 × 192 res-
olution compared to a 1280 × 720 depth map provided by
the Microsoft Azure Kinect. This low resolution is exacer-
bated by large errors in the retrieved depth map, which is
also observed in [1, 19]. The large amounts of errors (as
shown in Fig. 5) in the iPhone data also pose challenges for
researchers to develop a pose estimator that can correctly
predict object poses that rely heavily on the observed depth
map, which has not been particularly addressed in previous
works [7, 27, 33, 35, 38, 40]. We will demonstrate this in
following experiments (Table 3).

To investigate the 6DoF pose estimation problem under
the most popular mobile depth sensor, namely, the Apple
iPhone 14 Pro LiDAR, we propose an RGBD-based trans-
former model for 6DoF object pose estimation, which is
designed to effectively handle inaccurate depth measure-
ments and noise. As shown in Fig. 1, our method shows
robustness against noisy depth input, while other baselines
failed in such conditions. Meanwhile, we introduce DTTD-
Mobile, a novel RGB-D dataset captured by iPhone 14 Pro,
to bridge the gap of digital-twin pose estimation with mo-
bile devices, allowing research into extending algorithms
to iPhone data and analyzing the unique nature of iPhone
depth sensors. Our contributions are summarized into three
parts:
1. We propose a new transformer-based 6DoF pose esti-

mator with depth-robust designs on modality fusion and
training strategies, called DTTDNet. The new solution
outperforms other state-of-the-art methods by a large
margin especially in noisy depth conditions.

2. We introduce DTTD-Mobile as a novel digital-twin pose
estimation dataset captured with mobile devices. We
provide in-depth LiDAR depth analysis and evaluation
metrics to illustrate the unique properties and complexi-
ties of mobile LiDAR data.

3. We conduct extensive experiments and ablation studies
to demonstrate the efficacy of DTTDNet and shed light
on how the depth robustifying module works.
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Figure 2. Model Architecture Overview. DTTDNet pipeline
starts with segmented depth maps and cropped RGB images. The
point cloud from the depth map and RGB colors are encoded
and integrated point-wise. Extracted features are then fed into an
attention-based two-stage fusion. Finally, the pose predictor pro-
duces point-wise predictions with both rotation and translation.

2. Methods

In this section, we elaborate on the details of our method.
The objective is to estimate the 3D location and pose of a
known object in the camera coordinates from the RGBD im-
ages. This position can be represented using homogeneous
transformation matrix p ∈ SE(3), which consists of a rota-
tion matrix R ∈ SO(3) and a translation matrix t ∈ R3,
p = [R|t]. Section 2.1 describes our transformer-based
model architecture. Section 2.2 introduces two depth ro-
bustifying modules on depth feature extractions, dedicated
to geometric feature reconstruction and filtering. Section
2.3 illustrates our modality fusion design for the model to
disregard significant noisy depth features. Finally, Section
2.4 describes our final learning objective.

2.1. Architecture Overview
Fig. 2 illustrates the overall architecture of the proposed
DTTDNet. The DTTDNet pipeline takes segmented depth
maps and cropped RGB images as input. It then obtains
feature embedding for both RGB and depth images through
separate CNN and point-cloud encoders on cropped RGB
images and reconstructed point cloud corresponding to the
cropped depth images.2 Inspired by PSPNet [41], the image
embedding network comprises a ResNet-18 encoder, which
is then followed by 4 up-sampling layers acting as the de-
coder. It translates an image of size H × W × 3 into a
H ×W × drgb embedding space. For depth feature extrac-

2We preprocessed the RGB and depth images to guarantee the pixel-
level correspondence between the RGB image and the depth image. The
preprocessing process is detailed in Section 3.



tion, we take segmented depth pixels and transform them
into 3D point clouds with the camera intrinsic.

The 3D point clouds are initially processed using an
auto-encoder inspired by the PointNet [30]. The PointNet-
style encoding step aims to capture geometric representa-
tions in latent space in Rd1 . In this context, the encoder
component produces two sets of features: early-stage point-
wise features in RN×d2 and global geometric features in
Rd3 . Subsequently, we add a decoder that is guided by
a reference point set P to generate the predicted point
cloud P̂ . Features extracted from the encoder are subse-
quently combined with the learned representations to cre-
ate a new feature sequence with a dimension of RN×dgeo ,
where dgeo = d1 + d2 + d3.

This results in a sequence of geometric tokens with a
length equal to the number of points N . Extracted RGB and
depth features are then fed into a two-stage attention-based
fusion block, which consists of modality fusion and point-
wise fusion. Finally, the pose predictor produces point-wise
predictions with both rotation and translation. The predic-
tions are then voted based on unsupervised confidence scor-
ing to get the final 6DoF pose estimate.

2.2. Design for Robustifying Depth Data
In this section, we will introduce two modules (Fig. 3) that
enable the point-cloud encoder in DTTDNet to handle noisy
and low-resolution LiDAR data robustly.
Chamfer Distance Loss. Past methods either treated the
depth information directly as image channels [27] or di-
rectly extracted features from a point cloud for information
extraction [35]. These methods underestimated the corrup-
tion of the depth data caused by noise and error during the
data collection process. To address this, we first introduce a
downstream task for point-cloud reconstruction and utilize
the Chamfer distance as a loss function to assist our feature
embedding in filtering out noise. The Chamfer distance loss
is widely used for denoising in 3D point clouds [5, 12], and
it is defined as the following equation between two point
clouds P ∈ RN×3 and P̂ ∈ RN×3:

LCD(P̂ , P ) = 1
N (

∑
x̂i∈P̂

min
xj∈P

∥xi − x̂j∥22 +
∑

xi∈P

min
x̂j∈P̂

∥xi − x̂j∥22)

(1)
where P̂ denotes the decoded point set from the embedding,
and P denotes the reference point set employed to guide the
decoder’s learning. For the reference point set, we use the
point cloud sampled from the corresponding object CAD
models, which are used only in the training process.
Geometric Feature Filtering. Due to the non-Gaussian
noise distribution in iPhone LiDAR data (Fig. 5), which
should be assumed for most depth camera data, normal
estimators might either get perturbed by such noisy fea-
tures or interpret wrong camera-object rotations. To deal
with this sensor-level error, we advocate for the integra-
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Figure 3. Chamfer distance loss and geometric feature filtering.

tion of a geometric feature filtering (GFF) module before
the modality fusion module. Our approach incorporates the
fast Fourier transform (FFT) into the geometric feature en-
coding. Specifically, the GFF module includes an FFT, a
subsequent single layer of MLP, and finally, an inverse-FFT.
By leveraging FFT, we can transpose the input sequence of
geometric signals to the frequency domain, which selects
significant features from noisy input signals. After that, we
obtain a more refined geometric embedding that is resilient
to the non-Gaussian iPhone LiDAR noise.

2.3. Attention-based RGBD Fusion
Previous papers have emphasized the importance of modal-
ity fusion [11, 35] and the benefits of gathering near-
est points from the point cloud [11, 27] in RGBD-based
pose estimation tasks. While the feature extractor widens
each point’s receptive field, we aim for features to inter-
act beyond their corresponding points [35] or neighbor-
ing points [11]. In predicting the 6DoF pose of a cuboid
based on multiple feature descriptors, our focus is on at-
tending to various corner points, rather than solely those
in close proximity to each other. To this end, inspired by
recent transformer-based models used for modality fusion
[4, 8, 9, 18, 22, 28, 31, 36], we leverage the self-attention
mechanism [34] to amplify and integrate important features
while disregarding the significant LiDAR noise. Specifi-
cally, our fusion part is divided into two stages: modality
fusion and point-wise fusion (Fig. 2). Both of our fusion
modules consist of a standard transformer encoder with lin-
ear projection, multi-head attention and layer norm. The
former module utilizes the embedding from single-modal
encoders and feeds them into a transformer encoder in par-
allel for cross-modal fusion. The latter fusion module relies
on similarity scores among points. It merges all feature em-
bedding in a point-wise manner before feeding them into a
transformer encoder. Detailed design and visual analysis of
2 fusion stages are described in our supplemental materials.

2.4. Learning Objective
Based on the overall network structure, our learning objec-
tive is to perform 6DoF pose regression, which measures the



disparity between points sampled on the object’s model in
its ground truth pose and corresponding points on the same
model transformed by the predicted pose. Specifically, the
pose estimation loss is defined as:

(LADD)i,p =
1

m

∑
x∈M

∥(Rx+ t)− (R̂ix+ t̂i)∥ (2)

where M ∈ Rm×3 represents the randomly sampled point
set from the object’s 3D model, p = [R|t] denotes the
ground truth pose, and p̂i = [R̂i|t̂i] denotes the predicted
pose generated from the fused feature of the ith point.
Our objective is to minimize the sum of the losses for
each fusion point, which can be expressed as LADD =
1
N

∑N
i (LADD)i,p, where N is the number of randomly

sampled points (token sequence length in the point-wise fu-
sion stage). Meanwhile, we introduce a confidence regular-
ization score (ci) along with each prediction p̂i = [R̂i|t̂i],
which denotes confidence among the predictions for each
fusion point:

LADD =
1

N

N∑
i

(ci(LADD)i,p − wlog(ci)) (3)

Predictions with low confidence will lead to a low ADD
loss, but this will be balanced by a high penalty from the
second term with hyper-parameter w. Finally, the Cham-
fer distance loss, as outlined in Section 2.2, undergoes joint
training throughout the training process, leading us to derive
our ultimate learning objective as follows:

L = LADD + λLCD (4)

where λ denotes the weight of the Chamfer distance loss.

3. Dataset Description
DTTD-Mobile dataset contains 18 rigid objects along with
their textured 3D models. The data are generated from 100
scenes, each of which features one or more of the objects in
various orientations and occlusion. Following [6], our data
generation pipeline is consists of using a professional Op-
tiTrack motion capture system that captures camera pose
along the scene and using Apple’s ARKit3 framework to
capture RGB images from the iPhone camera and depth
information from LiDAR scanner, as illustrated in Fig. 4.
After obtaining such data, we then use the open-sourced
data annotation pipeline provided by [6] to annotate ground-
truth object poses. Through this pipeline, the dataset of-
fers ground-truth labels for 3D object poses and per-pixel
semantic segmentation. Additionally, it provides detailed
camera specifications, pinhole camera projection matrices,
and distortion coefficients. Detailed features and statistics

3https://developer.apple.com/documentation/arkit/

are presented in Table 1. The fact that the DTTD-Mobile
dataset includes multiple sets of geometrically similar ob-
jects, each having distinct color textures, poses challenges
to existing digital-twin localization solutions. To ensure
compatibility with other existing datasets, some of the col-
lected objects partially overlap with the YCB-Video [39]
and DTTD [6] datasets. Specific details on data acquisition,
benchmarking, and evaluation are provided in the appendix.

4. iPhone LiDAR data analysis
Compared to dedicated depth cameras such as the Microsoft
Azure Kinect or Intel Realsense, iPhone 14 Pro LiDAR ex-
hibits more noise and lower resolution at 256 × 192 depth
maps, which leads to high magnitudes of distortion on ob-
jects’ surfaces. Additionally, it introduces long-tail noise
on the projection edges of objects when performing inter-
polation operations between RGB and depth features. Fig.
5 demonstrates one such example of iPhone 14 Pro’s noisy
depth data.

To further quantitatively assess the depth noise of each
object from the iPhone’s LiDAR, we analyze the numerical
difference between LiDAR-measured depth map, which is
acquired directly from iPhone LiDAR, and reference depth
map, which is derived through ground truth pose annota-
tions. Specifically, to obtain the reference depth map, we
leverage ground truth annotated object poses to render the
depth projections of each object. We then apply the seg-
mentation mask associated with each object to filter out
depth readings that might be compromised due to occlusion.
To measure the difference between ground truth and refer-
ence depth map, we introduce the depth-ADD metric, which
calculates the average pixel-wise L1 distance between the
ground truth depth map and the reference depth map in each
frame. The depth-ADD value of each object at frame n is
calculated as follows:

depth−ADDn =
1

d

∑
i∈D

|depthLiDARi − depthref i| , (5)

where D denotes the LiDAR depth map and i denotes the
index of pixels on it. depthLiDARi and depthref i represent
the depth values from D and the corresponding depth value
from the reference depth map. The set D encompasses all
indices i under an object’s segmentation mask where both
depthLiDARi and depthref i yield values greater than zero.
The final depth-ADD value of each object is the average of
such measurements across all N frames:

depth−ADD =
1

N

∑
n∈N

depth−ADDn (6)

Tab. 2 includes the average depth-ADD error in each sam-
pled object in the second column. Greater depth-ADD val-
ues indicate increased distortions and the presence of long-
tail noise in the depth data. Our analysis indicates that the



Table 1. Features and statistics of different datasets.

Dataset Modality iPhone Camera Texture Occlusion Light variation # of frames # of scenes # of objects # of annotations

StereoOBJ-1M [24] RGB × ✓ ✓ ✓ 393,612 182 18 1,508,327
LINEMOD [13] RGBD × ✓ ✓ × 18,000 15 15 15,784
YCB-Video [39] RGBD × ✓ ✓ × 133,936 92 21 613,917
DTTD [6] RGBD × ✓ ✓ ✓ 55,691 103 10 136,226
TOD [23] RGBD × ✓ × × 64,000 10 20 64,000
LabelFusion [26] RGBD × ✓ ✓ ✓ 352,000 138 12 1,000,000
T-LESS [14] RGBD × × ✓ × 47,762 - 30 47,762
DTTD-Mobile (Ours) RGBD ✓ ✓ ✓ ✓ 47,668 100 18 114,143

Figure 4. Left: Setup of our data acquisition pipeline. Right: 3D models of the 18 objects in DTTD-Mobile.

mean depth-ADD across all objects is around 0.25m. It is
worth noticing that the depth quality varies significantly and
could be affected by outliers. For example, there are three
objects: black marker, blue marker and pink marker ex-
hibiting greater errors in comparison with the other objects.
Detailed depth analysis is reported in the appendix.

5. Experiments
5.1. Evaluation Metrics
We evaluate baselines with the average distance metrics
ADD and ADD-S according to previous protocols [6, 39].
Suppose R and t are ground truth rotation and translation
and R̃ and t̃ are the predicted counterparts. The ADD met-
ric computes the mean of the pairwise distances between
the 3D model points using ground truth pose (R, t) and pre-
dicted pose (R̃, t̃):

ADD =
1

m

∑
x∈M

∥(Rx+ t)− (R̃x+ t̃)∥, (7)

where M denotes the point set sampled from the object’s
3D model and x denotes the point sampled from M .

The ADD-S metric is designed for symmetric objects
when the matching between points could be ambiguous:

ADD−S =
1

m

∑
x1∈M

min
x2∈M

∥(Rx1 + t)− (R̃x2 + t̃)∥. (8)

Following previous protocols [20, 24, 25, 35, 39], a 3D
pose estimation is deemed accurate if the average distance

error falls below a predefined threshold. Two widely-used
metrics are employed in our work, namely ADD/ADD-
S AUC and ADD/ADD-S(1cm). For commonly used
ADD/ADD-S AUC, we calculate the Area Under the Curve
(AUC) of the success-threshold curve over different dis-
tance thresholds, where the threshold values are normalized
between 0 and 1. On the other hand, ADD/ADD-S(1cm) is
defined as the percentage of pose error smaller than the 1cm
threshold.

5.2. Experimental Results
In this section, we compare the performance of our method
DTTDNet with four other 6DoF pose estimators, namely,
BundleSDF [37], MegaPose [20], ES6D [27], DenseFusion
[35]. While all four methods leverage the benefits of multi-
modal data from both RGB and depth sources, they differ in
the extent to which they emphasize the depth data process-
ing module. Quantitative experimental results are shown in
Table 2. Qualitative examples are shown in Fig. 6.

BundleSDF [37] learns multi-view consistent shape and
appearance of a 3D object using an object-centric neu-
ral signed distance field, leverages frame poses captured
in-flight. However, the approach struggles with 3D ob-
ject reconstruction when faced with large distances, low
resolution, or insufficient frame sequence per viewpoint.
BundleSDF [37] achieves an ADD AUC of 46.86 and an
ADD-S AUC of 55.74. This method failed to reconstruct 8
out of 26 object-scene combinations in DTTD-Mobile. As
shown in 6, the failure in 3D object reconstruction results



Figure 5. Visualization of an iPhone LiDAR depth scene that shows distortion and long-tail non-Gaussian noise (highlighted inside the red
box). (a) Front view. (b) Left view. (c) Right view.

Table 2. Comparison with diverse 6DoF pose estimation baselines on DTTD-Mobile dataset. We showcase AUC results of ADD-S
and ADD on all 18 objects, higher is better. Based on considered 4 baselines, our model significantly improves the accuracy on most
objects. Note that the left-most column indicates the per-object depth-ADD error.

depth-ADD DenseFusion [35] MegaPose-RGBD [20] ES6D [27] BundleSDF [37] DTTDNet (Ours)

Object Average ADD AUC ADD-S AUC ADD AUC ADD-S AUC ADD AUC ADD-S AUC ADD AUC ADD-S AUC ADD AUC ADD-S AUC

mac cheese 0.184 88.10 93.17 78.98 87.94 28.29 57.06 89.95 94.84 94.06 97.02
tomato can 0.222 69.10 93.42 68.85 84.48 19.07 56.17 79.62 93.65 74.23 94.01
tuna can 0.278 42.90 79.94 8.90 22.11 10.74 26.86 25.05 37.94 62.98 87.05
cereal box 0.151 75.20 88.12 59.89 71.53 10.09 53.92 0.00 0.00 86.55 92.74
clam can 0.157 90.49 96.32 74.11 90.45 17.75 35.92 75.22 96.05 88.15 96.92
spam 0.286 53.29 91.14 72.35 86.16 3.17 13.74 89.24 95.12 52.81 90.83
cheez-it box 0.152 82.73 92.10 89.18 94.83 7.81 37.14 42.46 51.69 87.03 93.91
mustard 0.184 78.41 91.31 76.08 85.38 21.89 52.56 84.03 92.99 84.06 92.15
pop-tarts box 0.139 82.94 92.58 44.36 58.97 3.44 35.26 82.24 92.01 84.55 92.65
black marker 0.769 32.22 38.72 17.38 34.15 2.12 3.72 0.00 0.00 44.08 53.50
blue marker 0.370 66.06 74.80 6.87 12.46 16.88 41.46 0.00 0.00 50.88 61.69
pink marker 0.410 56.46 67.86 47.84 58.59 1.59 7.01 0.00 0.00 64.18 73.00
green tea 0.265 64.37 93.10 48.43 70.50 8.80 32.86 60.24 87.29 64.59 92.31
apple 0.119 68.97 91.13 32.85 76.43 31.65 58.46 79.27 91.78 82.45 94.80
pear 0.085 65.66 91.31 35.80 56.73 16.93 32.57 80.12 93.72 47.83 88.11
pink pocky 0.231 50.64 67.17 8.69 18.25 0.77 1.93 2.31 6.25 61.40 82.33
red pocky 0.245 88.14 93.76 76.49 84.56 25.32 51.16 77.08 91.26 90.00 95.24
white pocky 0.265 89.55 94.27 42.83 54.65 17.19 47.45 24.93 26.71 90.83 94.70

Average 0.239 69.67 85.88 49.02 62.44 13.25 37.38 46.86 55.74 73.99 88.10

in the absence of object pose tracking in the corresponding
scenes. The BundleSDF, as shown in Figure 1, excludes
objects in scenes lacking associated pose tracking.

MegaPose [20] employs a coarse-to-fine process for pose
estimation. The initial ”coarse” module leverages both
RGB and depth data to identify the most probable pose
hypothesis. Subsequently, a more precise pose inference
is achieved through the ”render-and-compare” technique.
Disregarding the noise in the depth data can also impair
the effectiveness of their coarse module, consequently lead-
ing to failure in their refinement process. Even with the as-
sistance of a refiner, MegaPose-RGBD [20] only manages
to attain an ADD AUC of 49.02 and an ADD-S AUC of
62.44. Its damage and susceptibility to depth noise falls
somewhere between DenseFusion [35] and ES6D [27].

DenseFusion [35] treats both modalities equally and
lacks a specific design for the depth module, whereas ES6D
[27] heavily relies on depth data during training, using
grouped primitives to prevent point-pair mismatch. How-
ever, due to potential interpolation errors in the depth data,
this additional supervision can introduce erroneous signals

to the estimator, resulting in inferior performance compared
to DenseFusion [35]. DenseFusion [35] achieves 69.67
ADD AUC and 85.88 ADD-S AUC, whereas ES6D [27]
only achieves 13.25 ADD AUC and 37.38 ADD-S AUC.

In contrast, our approach harnesses the strengths of both
RGB and depth modalities while explicitly designing robust
depth feature extraction and selection. In comparison with
the above baselines, our method achieves 73.31 ADD AUC
and 87.82 ADD-S AUC, surpassing the state of the art with
improvements of 1.94 and 3.64 percent in terms of ADD
AUC and ADD-S AUC, respectively.

To assess the real-time applicability of DTTDNet, we
benchmarked its inference speed on a single NVIDIA RTX
A6000 GPU. Our model achieves an average inference time
of 0.0172 seconds per object and 0.0378 seconds per frame,
corresponding to 58.01 objects per second and 26.43 FPS.
These results demonstrate that DTTDNet is well-suited for
real-time 6DoF pose estimation, achieving efficient perfor-
mance without sacrificing robustness or accuracy.



Original Scene DenseFusion MegaPose-RGBD ES6D DTTDNet (Ours)BundleSDF

Figure 6. Qualitative evaluation of different methods. To further validate our approach, we provide visual evidence of our model’s
effectiveness in challenging occlusion scenarios and varying lighting conditions, where other models’ predictions fail but ours remain
reliable. It should be noted that BundleSDF [37] fails to reconstruct 3D objects in some scenes, resulting in the absence of annotations for
such objects.

Table 3. Comparison between 2 datasets with diverse 6DoF pose estimation baselines. We evaluate the results as the ADD-S AUC on
the overlapping objects between the YCB video dataset and the DTTD-Mobile (DTTD-M) dataset, higher is better.

depth-ADD DenseFusion [35] MegaPose-RGBD [20] ES6D [27] BundleSDF [37] DTTDNet (Ours)

Object YCB DTTD-M YCB DTTD-M YCB DTTD-M YCB DTTD-M YCB DTTD-M YCB DTTD-M

tomato can 0.011 0.222 93.70 93.42 86.11 84.48 89.02 56.17 68.27 93.65 96.69 94.01
mustard bottle 0.005 0.184 95.90 91.31 87.41 85.38 93.13 52.56 98.21 92.99 97.39 92.15
tuna can 0.013 0.278 94.90 79.94 91.03 22.11 74.86 26.86 91.11 37.94 95.78 87.05

average 0.009 0.228 94.83 88.22 88.18 63.99 85.67 45.20 85.86 74.86 96.62 91.07

5.3. Ablation Studies

In this section, we further delve into a detailed analysis of
our own model, highlighting the utility of our depth robus-
tifying module in handling challenging scenarios with sig-
nificant LiDAR noise.
Evaluation of DTTDNet on other datasets. To show
that our proposed pose estimator could also be generalized
to other domains, we evaluate our method on the YCB-
Video dataset [39], which outperforms MegaPose [20] and
ES6D [27] by 6.87 and 7.90 points on ADD(S), respec-
tively, when performing fair comparison (i.e., without any
data pre-cleaning and iterative refinement).

We share 3 overlapping objects between the YCB video
dataset and our DTTD-Mobile dataset, and demonstrate the
models’ performance on these objects to examine perfor-
mance drop of each baseline when shifting the datasets, as
shown in Table 3. DTTDNet achieves the highest perfor-

mance on both datasets, and shows less performance drop
when occurring iPhone LiDAR noise. Detailed per-object
evaluation is appended in the appendix.
Robustness to LiDAR Depth Error. To answer the ques-
tion of whether our method exhibits robustness in the pres-
ence of significant LiDAR sensor noise when compared to
other approaches, we further assess the depth-ADD met-
ric, as discussed in Section 4, on DTTDNet versus the four
baseline algorithms. Fig. 7 illustrates the correlation be-
tween the model performance (ADD) of four methods and
the quality of depth information (depth-ADD) across vari-
ous scenes, frames, and 1239 pose prediction outcomes for
the 18 objects. Our approach ensures a stable pose predic-
tion performance, even when the depth quality deteriorates,
maintaining consistently low levels of ADD error overall.
Effect of Depth Feature Filtering module. Table 4 il-
lustrates the improvement in ADD AUC metrics achieved
by our method when integrating geometric feature filtering



Figure 7. Shadow plot of the relation between the depth noise
(depth-ADD) and the inference error (ADD) of considered state-
of-the-art methods and proposed DTTDNet.

Figure 8. Probability Distribution of Reduced Geometric Fea-
tures. Left: before the GFF module. Right: after the GFF module.

Table 4. Effect of Depth Feature Filtering. M8P4 denotes our
model with a fusion stage consisting of 8-layer modality fusion
and 4-layer point-wise fusion modules. This table shows the im-
provement of M8P4 with further incorporation of geometric fea-
ture filtering (GFF).

Methods ADD AUC ADD-S AUC ADD (1cm) ADD-S (1cm)

M8P4 72.03 86.44 19.86 70.50
+ GFF 73.31 87.82 24.35 66.16

Table 5. Effect of Object Geometry Augmented CDL. This table
depicts the enhancement in model performance when switching
the reference point set from being reliant on the depth map to being
augmented by the object model.

Methods CDL supervised by ADD AUC ADD-S AUC ADD (1cm) ADD-S (1cm)

2*M8P4+GFF LiDAR depth 73.31 87.82 24.35 66.16
CAD model 73.99 88.10 25.85 67.75

module. To provide a detailed insight into the impact of
the GFF module, we conducted principal component anal-
ysis (PCA) on both the initial geometric tokens encoded by
the PointNet and the filtered version after applying the GFF
module, i.e., projected the embedding to a 1-D array with
its dominant factor. We visualize the geometric embedding
both before and after the application of the GFF module
by generating histograms of the dimensionally reduced geo-

Table 6. Effect of Layer Number in 2 Fusion Stages. It shows
DTTDNet with different layer number combinations in the fusion
stages with one ◦ denoting one layer. For all combinations, CDL
is used in the geometric feature extraction stage.

Layer Num of # Metrics

Modality Fusion Point-wise Fusion ADD AUC ADD-S AUC ADD (1cm) ADD-S (1cm)

◦◦ ◦ 70.73 85.42 22.91 67.75
◦◦ ◦◦ 71.37 86.69 15.74 64.44
◦◦ ◦◦◦◦ 72.06 86.37 19.57 68.37

◦◦ ◦ 70.73 85.42 22.91 67.75
◦◦◦◦ ◦◦ 71.76 88.23 20.01 69.03

◦◦◦◦◦◦◦◦ ◦◦◦◦ 72.03 86.44 19.86 70.50

metric tokens, as shown in Fig. 8. The distribution of these
tokens, as shown in the right subplot, becomes more bal-
anced and uniform after learning-based filtering through the
GFF module. The enhanced ADD AUC performance can be
attributed to the balanced distribution achieved through the
use of the depth robustifying module.

Effect of Geometry Augmented CDL. We replaced the
reference point set for CDL with measured LiDAR depth
data as a baseline to demonstrate the effectiveness of our
design choice when supervised by the point cloud sampled
from 3D object models. In Table 5, we conduct a perfor-
mance comparison of our approach with these two refer-
ence point choices, our design choice achieved higher ADD
AUC and ADD-S AUC, as well as higher performance in
the more stringent metric, ADD/ADD-S 1cm (Table 5).

Effect of Layer Number Variation in Fusion Stages. Ta-
ble 6 display the variations brought about by increasing the
number of layers at different fusion stages. Overall, adding
layer number increases the model’s performance in terms of
ADD AUC. As we proportionally increase the total number
of layers in the modality fusion or point-wise fusion, sus-
tained improvement is observed.

6. Conclusion

We have presented DTTDNet as a novel digital-twin lo-
calization algorithm to bridge the performance gap for 3D
object tracking in mobile enviroments and with critical re-
quirements of accuracy. At the algorithm level, DTTDNet
is a transformer-based 6DoF pose estimator, specifically
designed to navigate the complexities introduced by noisy
depth data. At the experiment level, we introduced a new
RGBD dataset captured using iPhone 14 Pro, expanding our
approach to iPhone sensor data. Through extensive exper-
iments and ablation analysis, we have examined the effec-
tiveness of our method in being robust to erroneous depth
data. Additionally, our research has brought to light new
complexities associated with object tracking in dynamic AR
environments.
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